Almost constrained subspaces of Banach spaces
نویسندگان
چکیده
منابع مشابه
Central and Almost Constrained Subspaces of Banach Spaces
In this paper we continue the study of central subspaces initiated in [2] and its infinite version called almost constrained subspaces. We are interested in studying situations where these intersection properties of balls lead to the existence of a linear projection of norm one. We show that every finite dimensional subspace is a central subspace only in Hilbert spaces. By considering direct su...
متن کاملBANACH SPACES OF POLYNOMIALS AS “LARGE” SUBSPACES OF l∞-SPACES
In this note we study Banach spaces of traces of real polynomials on R to compact subsets equipped with supremum norms from the point of view of Geometric Functional Analysis.
متن کاملStrongly Proximinal Subspaces in Banach Spaces
We give descriptions of SSDand QP -points in C(K)-spaces and use this to characterize strongly proximinal subspaces of finite codimension in L1(μ). We provide some natural class of examples of strongly proximinal subspaces which are not necessarily finite codimensional. We also study transitivity of strong proximinal subspaces of finite codimension.
متن کاملCharacterizations of almost transitive superreflexive Banach spaces
Almost transitive superreflexive Banach spaces have been considered in [7] (see also [4] and [6]), where it is shown that such spaces are uniformly convex and uniformly smooth. We prove that convex transitive Banach spaces are either almost transitive and superreflexive (hence uniformly smooth) or extremely rough. The extreme roughness of a Banach space X means that, for every element u in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2003
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-03-07146-6